
.

i '.
i

i

I .

(N A S A - C R - 1 8 2 9 8 9) ON GRAY CODE HAPPING FOR N90-7 1373
MESH-FTTS ON BINARY n-CUBES (Research Inst.
f o r Advanced Computer Science) 2 1 p

unctas
00/61 0295404

Research Institute for Advanced Computer Science

.

On Gray Code Mapping for
Mesh-FTTS on Binary N-Cubes

Tony F. Chan

September 9, 1986

Research Institute for Advanced Computer Science
NASA Ames Research Center

RIACS Technical Report 86.17

- . --.
On Gray Code Mappings for Mesh-FFTs on Binary N-Cubes

Tony F. Chad

RIACS Technical Report 86.17
September 9, 1986

(Revised April 1987)

,-

i:

. .

Abstract

This a.r.rde discusses mzppings of data onlo a binary n-cube computer for efficient
computations of the fast Fourier transform 0. We show that, while the binary n-
cube is an ideal topology for the FFI' in the sense that the FFl? butterfly data flow
graph can be mapped into it with no increase in the distance between vertices, the re-
quired mapping is not the optimal one for other data flow graphs, such as the nearest
neighbor (NN) mesh. Thus the ideal FFI' mapping may not be the best one to use in
applications which calls for both FFT and NN computations on a mesh, which is rath-
er common in many applications. To overcome this difficulty, we propose and
analyze the use of a special Gray code mapping of the mesh, which in addition to
preserving the NN property, is also suitable for the FET, increasing the distance
between vertices by at most one, independent of the size of the data array. We derive
a model for thq communication cost which can be used to decide which mapping
minimizes communication arid whether conversion between the two mappings is
worthwhile for a particular application. Comparison of the model with the timing
results obtained by Chamberlain on the Intel iPSC will be presented.

'This work is supp~ned by l e Research Institute in Advanced Computer Science. NASA Amu Resurch Ccntcr ud the
Department of Energy under Conma DE AC02 81ER 10996 while h e author is m sabbatical luvc from Yale Univasity. C u m
address: Ibs of Malharutia. UCLA. 405 Hilgard Av., La Angcler. CA 90024.

FFTkIyperc ube

1. lntroduction

1

A d-dimensional binary n-cube, sometimes called the 'hypercube, is a graph of 2d ver-
tices, each numbered with a distinct positive integer less than 2d-1, with an edge
between two vertices if and only if'the Hamming distance (the number of bits that
differ) between the binary repksentation of their vertex numbers is equal to one. With
the recent advent in parallel computing, the hypercube has become a very popular
topology for building multiprocessor parallel computers, with the vertices correspond
to processors and the edges correspond to communication channels. Part of the reason
often quoted for this choice of !opol9gy is the fact that many other topologies, such as
meshes, trees, pyramidsand butterflies, are embeddable in the binary n-cube [7]. By
this we mean the graphs representing these other topologies can be mapped onto the
binary n-cube graph with small dilation (the relative increase in the distance between
vertices) and expansion (the relative increase in the total number of vertices) [6]. In
practice, this implies that computations involving data flow graphs taking the form of
the previously mentioned topologies can be carried out with minimum communication
overheads on binary n-cube cgmputers.

Unfortunately, what is often not appreciated is the fact that different graphs require
different mappings. Moreover, in applications where the same data set must be
operated on by more than one algorithm, it is possible that the optimal mappings for
the hdividual algorithms are not compatible .wit& one another. What is ideal for one
could be disasterous for the others.

The main goal of this article is to point out one such example involving the FFI'
butterfiy and the nearest neighbor mesh. The binary n-cube is an ideal FiT' machine.
However, the usual mapping for Ff;T is quite bad for peforming nearest neighbor
computations on a mesh, as we shall show later. This poses a dilemma in applications
in which both FFI' and NN computations are required on the same data, such as in
algorithms for solving the partial differential equations of fluid dynamics. We shall
show that a particular mapping which is ideal for the NN mesh, namely one employing
the binary reflected Gray code (BRGC), is also suitable for FFI' computations. If the
data is mapped onto the cube using this mapping, then FFTs can be performed on the
same data with data transfers limited to at most two vertices apart. That is, the BRGC
mapping maps the FFT butterfly onto the cube with dilation bounded above by 2.
Moreover, this property is independent of the size of the data array. We also derive
a model for the communication.cost which can be used to decide which mapping
minimizes the communication cost iq -a particular application and whether a conversion
between the two mappings is costeffective.

The BRGC possesses a special property, not shared by other Gray codes, which is very
useful in many algorithms for solving partial differential equations. The idea of
exploiting this property for FiT's on hypercubes seems to have occurred independently
to several other researchers. For example, this possibility was mentioned by Johnsson
in [ll], although the context did not arise within NN-mesh computations.

3..

. . .

I

FFI'kIypercube 9
1

Chamberlain [lo] also pointed out the advantage of using the BRGC mapping for
mesh-FFTs and performed some numerical experiments on the Intel iPSC. He did not
derive a timing model nor did he consider the conversion between the two mappings.
We will compare 8ur model to his timing results in this paper.

In section 2, we review the FFT and its optimal mapping onto the binary n-cube. The
mapping for the NN mesh is discussed next in section 3. The incompatibility of these
two mappings is explained in section 4. The use of the BRGC for FFT is discussed in
section 5. In section 6, we present the conversion algorithm and in section 7 we
briefly discuss extensions to larger problems. We derive the communication cost
model in section 8 and compare this to the timing results of Chamberlain. We close
with some remarks"in section 9. We shall restrict our discussions to the radix-2 FFT
algorithm. I\ 1 ,

2. The FFT Mapping

The data flow graph for the FFT is usually referred to as the "butterfly", an example of
which is shown in Fig. 1 for an array of size 8. Both the decimation in time and
decimination in frequency form of the FFT algorithm has the same data flow graph.
More generally, the data flow for an array of size 2d can be described through the
binary representation of the indices of the array elements. Let the array elements be
x i , where the index j ranges from 0 to 2d-1. These array elements are updated at
each of d stages of the computation. At the i-th stage of the computation, the array
element with index j must communicate with another element with index k, whose
binary representation differs from that of j in the i-th most significant position. On a
hypercube, the natural mapping is to map xi to node number j of the cube (see for
example [2]). To be mathematically precise, let M : I + N be the class of mapping
functions, where I denote the set of indices of the array elements and N the set of
node numbers of the hypercube. Then the FFT mapping f e M is given by

f W = j . (1)
With this mapping, it is easy to see that at every stage of the computation, the neces-
sary communication will be between neighboring nodes. Moreover, all such communi-
cations at a given stage can be carried out in parallel. Each stage can be viewed as
"collapsing" the hypercube in one of its coordinates. In fact, the hypercube is iso-
morphic to the butterfly of the same dmension. An illustration of this mapping on the
cube is illustrated in Fig. 2 for the case d = 3.

Note that after the completion of the forward transform, the data elements are not
arranged in the natural order. Rather, they are in what is known as bit-reversed order.
This is unimportant if the inverse transform of the data array is to be computed next,
perhaps after some computations on the transformed array itself, which is typical in
many applications. If needed, the array elements can be permuted into natural order in
d steps with only nearest neighbor communication by reversing the steps of the
butterfly [8].

FlWH ypercube 3

3. The NN Mesh Mapping I. , i ' * r

T-pt

Another very common data flow graph is the nearest neighbor (") mesh, which
occurs naturally in the solution of partial differential equations. We shall limit our dis-
cussion here to one dimensional meshes, since higher dimensional meshes can be
easily built from tensor products of one dimensional onesu]. If the array elements are
denoted by x i , then the NN-mesh graph with the xi's as vertices contains all edges
connecting a given vertex xj with its nearest neighbors on the mesh. In one dimen-
sion, these are the two vertices and xi+l. (Throughout this paper, all indices are
to be taken modulo 2'?, where d i s the dimension of the hypercube.)

It is well-known that the "-mesh graph with 2d vertices can be mapped into a d -
dimensional hypercube with no dilation or expansion via Gray codes. We shall review
this construction briefly.

A d-dimensional Gray code is,. a sequence of 2d distinct d-bit numbers
Gd = [gO,gl,...,g;r'-l], with the property that the Hamming distance between any two
consecutive (cyclically) members of the sequence is equal to one. For example,

G3=[O00,001,011,010, 110, 111, 101, 1001

is a 3-dimensional Gray code. There are many efficient algorithms for generating
Gray codes [a. OR the other hand, Gray codes are not unique. For example, the fol-
lowing is a Gray code different from G3:

(3) H 3 = i 000, mi, uii, 111, 101, 100, iio,o10].

The natural mapping rn EM for h e hT-mesh to a d-dimensional hypercube is

m Cikgj, (4)
where gj is the j-th member,of a d-dimensional Gray code. Due to the defining pro-
perty of Gray codes, with this mapping all nearest neighbors on the mesh are mapped
onto nodes on the hypercubes at distance one apart. It is important to note that any
d-dimensional Gray code will work. Figure 3 shows the mapping rn for a 3-
dimensional hypercube using the Gray code G3. The arrows indicate the Hamiltonian
circuit through the hypercube formed by the mesh.

I -1
J

4. The Incompatability Of the FFT and the NN-Mesh Mappings

It appears that the mapping f is ideal for mapping data onto the hypercube for fast
Fourier transforms - the data flow graph of the FFI' is mapped directly into the hyper-
cube with no dilation or expansion. Similarly, the mapping rn is ideal for mapping
data onto the hypercube for NN-mesh computations. Unfortunately, the mappings f
and rn required for each kind of computation are different! This creats a potential
problem in applications where the same data must be operated on by both the FFT and
the NN-mesh algorithms. In fact, the most natural mapping for the FFT' algorithm,

i r y r , & +, I

FFTkIgpcrcube 4

namely f , turns outLto be inefficient for NN-mesh computations. This is directly
related to the following property of the hypercube.

I ._

Theorem 1. In a d-dimensional hypercub, the maximum Hamming distance between
nodes with consecutive node numbers i s equal to d .

Proof. It can be verified that dist(2d;'-1 , 2d-')=d.

The practical significance of the above theorem is that if the data array xi is mapped
onto the hypercube using the FFT mapping f , then a nearest neighbor computation on
the same data array requires communication over a distance d for some nodes. For
higher dimensional hypercubes, this may cause a significant reduction in the efficiency
of algorithms using the nearest neighbor data flow graph.

Note that the Hamming distance between the two specific neighbors on the NN-mesh,
namely node 2d-1-1 and node 2d-', is equal to d , the diameter of the hypercube,
which is the maximum distance between any two nodes on the hypercube. Thus, as far
as the NN-mesh computation is concerned, the FFT mapping f is the worst possible
mapping.

I

*It

Applications employing both the FFI' and the NN-mesh data flow graphs are very
common, especially if they involve the solution of partial differential equations. Com-
putational fluid dynamics is one such example. A finite difference discretization of the
Navier Stokes equation often produces a nearest neighbor stencil. Thus the NN-mesh
mapping is natural for computation of residuals. On the other hand, if a spectral
method or a fast Poisson solver is used to solve the difference equations, then the FFT
mapping is called for. The most natural mapping for one operation is inefficient for the
other.

A natural solution to this dilemma is to rearrange the data before the execution of each
algorithm according to the most natural mapping for that algorithm. This may be cost
effective if the algorithm is to be executed many times over between data rearrange-
ments. However, there is still a cost for such rearrangements and it would be prefer-
able to employ a mapping that is almost optimal for both algorithms, thus avoiding
any unnecessary data movements. We shall show in the next section that this is possi-
ble.

5. The Binary Reflected Gray Code Mapping

We have shown iin the last section that the natural FFT mapping f is not suited for
NN-mesh computations. A natural question at this point is whether the natural NN-
mesh mapping m is suited for FFT computations. We shall show in this section that
the answer to this question is affirmative, provided we choose the mapping m in a spe-
cial way.

.i
* I

4

FFTMypercube 5

Recall that the mapping m is defined in terms of Gray codes. Since Gray codes are
nonunique, so is the mapping m. For NN-mesh computations, it does not matter which
of the many possible mappings for rn we use. It turns out, however, that many of
these allowable mappings for m are unsuitable for FFT computations. Fortunately, and
somewhat surprisiigly, one can always find a mapping m that is also suitable for
FFI’s. This is precisely the mapping m defined by a special Gray code, namely the
Binary Reflected Gray Code (BRGC), as we shall show.

The BRGC can be recursively defined as follows:

Bi+l= [OB,, lB;], - (6)
where OBi denotes&e sequence’ obtained by prefixing each member of Bi by 0 and B;
denote the sequence obtained by reversing the order of Bi. The first few BRGC’s are
shown below:

B , = [00, 01, 11, 101 (8)

B3 = [OOO, 001,011,010, 110, 111, 101, loo] (9)

B 4 = [oooO,OOO 1,001 1,0010,Ol 10,011 1 ,O 10 1,0100,

1100,1101,1111,1110,1010,1011,1001,1000]. (10)

It is easy to prove by induction that Bi as defined above are Gray codes. One simply
observes that in Gi+l, if a neighboring pair of members lie completely in the first or
the second half, then the Hamming distance between them is the same as that between
the corresponding members of G i , which by induction is equal to one; and if the pair
“straddles” the two halves, then they also differ by one bit because they are obtained
from the last member of Gi by prefixing a 0 and a 1.

What distinguishes the BRGC from other Gray codes is the following property.

Theorem 2. Let Bd=[bo, b l , ..., by-1] be a d-dimensional BRGC, then for O I ~ C ~ ~ ,

where all subscripts are to be taken modulo 2d.

Proof. A proof can be found in [4].

The above theorem states that if we take an arbitrary member bi of the BRGC B d ,
then it is at a distance one away from its neighbor bi+l (the case j = 0, which follows

iJ

, a 1

. - . . E-

';'

FFT/Hypercube 6

directly from that fact that Bd is a Gray code), and, more importantly, that if one takes
strides of increasing powers of 2 from bi (the case j > 0), then the distance remains
exactly 2, no matter how large the stride 'or the dimension of the BRGC is. This
important property of the BRGC can be viewed as a property of a regular global con-
nection between the members of the BRGC. Many algorithms can take advantage of
this global connectivity, such as cyclic reduction. algorithms for solving mdiagonal
linear systems [3] and multigrid algorithms for solving partial differential equations
[I].

We emphasize that not every Gray code possess this very useful property. For exam-
ple, the following 4-dimensional Gray codes does not:

%4 = [oooo;oool,~oi 1,0010,0110,011 1,0101,1 101,

1111,1110,1010,1011,1001,1000,1100,0100],

because dist (0000,1111) = 4.

It is interesting to note that the BRGC happens to be the most commonly used Gray
code in the literature for mapping "-meshes onto hypercubes, although the global
connectivity property stated in Theorem 2, which is relatively little known, is seldom
the reason for this choice.

To see that this property is also useful for FFT's, we note that the FFT butterfly
involves pairs of array elements separated by strides of diminishing powers of 2 and
thus if the array elements are mapped to the hypercube using a BRGC, then the com-
munications occur between nodes at most a distance two apart. This leads us to the
following theorem.

Theorem 3. The FFT butterfly graph with 2d vertices is mapped into the d -
dimensional hypercube with no expansion and with dilation bounded above by 2 under
the mapping r e F defined by r (j) = b j , where bj is the j-th member of the d -
dimensional BRGC B d .
Proof. Recall that at each stage of the FFI' computation, the necessary communica-
tions are between pairs of array elements whose indices differ in exactly one bit in
their binary representations. It is easy to verify that if it is the i-th least significant bit
that differs, then the array elements are at a stride of 2j-l apart. Under the mapping r ,
the nodes where they reside are at a distance at most 2 apart, due to the above men-
tioned property of'the BRGC: ''

It is easy to verify the above iesult for the case d = 3 as illustrated in Figure 3. (Note
that G3 is a BRGC.) For example, the element x o communicates with x4 at the fist
stage of the FFT and with x 2 at the second stage, both at distance 2 away. At the final
stage, it communicates with x i which is distance 1 away.

.*

.'I

c: 1

7

._ i?%L

6. Conversion Between the BRCC and FiT Mappings

As mentioned earlier, one can consider rearranging the data before the execution of
each algorithm according to the most natural mapping for that algorithm, especially if
the algorithm is to be executed many times. In this section, we shall present an algo-
rithm, adapted from one given by Johnsson [111, for accomplishing such a conversion
between the FFI' and the NN-mesh mappings.

We shall consider converting from the BRGC mapping to the FFI' mapping. Conver-
sion in the other direction can be performed by reversing the steps.

Lemma. A BRGC mapping can be converted to a FFT mapping in d-1 edge disjoint
exchanges in a d-dimensional hypercube.

Proof [ll]. The proof is by induction and is constructive. The lemma can be verified
to be true for the lcube where no exchanges are necessary. Assume it is true for a k-
cube. For a (k+l)-cube, the BRGC maps the data xi 's to the processors

I . : I

where the bi's are the k-dimensional BRGCs. The first half of the data is in the k-
dimensional subcube with leading bit 0, mapped according to the k-dimensional
BRGC. Ey the inducrion h;.poC!esis, they can be converted to the r"FT mapping by
k-1 edge disjoint exchanges. The second half of the data in the subcube with leading

pairwise edge disjoint exchanges between the pairs (1b2~-1,1b~),(lb~t, ,1bl) etc.,
which corresponds to an exchange in the leading bit of the subcube, the data can be
brought into a confiepation corresponding to a mapping by the k-dimensional BRGC.
By the induction hypothesis, a further k-1 edge disjoint exchanges completes the
conversion, making a total of k such exchanges.

hit 1 rnzpped zccnfinop tQ ref?r& k-fimensinnd BRGC- PeTFnmjng p - 1

The algorithm for the conversion can be summarized as follows. Let the binary
representation of the node number of a particular node be i = ioil - - id-l. The algo-
rithm consists of d-1 exchanges. At the j-th stage, if ij=l then the data in that node
is exchanged with the data in the neighboring node in the (j+l)-th dimension.

7. Larger Problems

All our mappings and algorithms extend straighforwardly to situations where there are
more data elements than the ndmber of nodes. Suppose that we have 2" data and a 2d
cube. We divide the data array into 2d equal parts, with consecutive 2"6 elements
grouped together into blocks:. Then each blcok of elements can be mapped onto the
cube using any one of the mappings presented earlier.
FFT, each block of elements must be communicated to
subsequent n -d stages, no internode communications

l+?"LI, ; '#

For the first d stages of the
a neighboring node. For the
are needed. For NN-mesh

8 FFUHypercube
:+-'
= \

computations, only a boundary data element needs to be communicated.

Finally, higher dimensional meshes can be mapped using tensor products of one
dimensional mappings [1,4,7,11]. The mapping for a point in the mesh is obtained by
concatenating the binary representation of the one dimensional mappings of each of its
coordinates. Since the FFI' and the NN-mesh data flow graph in each coordinate direc-
tion is mapped into subcubes, all properties of the one dimensional mappings are
preserved. The conversion algorithm can also be extended by applying the one dimen-
sional version in each coordinate in succession.

*.A

8. Timing Analysis

In this section, weshall give a perfo&ance analysis for the various algorithms that we
have given earlier. We shall consider a one dimensional data array with 2n elements
on a d-cube, mapped in groups of q = 2"" consecutive elements as described in the
last section. We shall let s , c denote respectively the startup time for internode com-
munication and the communication rate per data element. We shall also assume
bidirectional communication over the same channel and therefore an exchange actually
takes the same time as performing just one send.

8.1. Timing for FFT

We first consider the FFI' computation. Let a denote the computational time at each
node at each stage of the FFT computation, Then the time for an FFT on the array is
given by

Tfft = qn a+(d-l)(s+qc)&t(s+qc)

where 6 = 1 under the FFT mapping f and 6 = 2 under the BRGC mapping r . The
last term on the right reflects the fact that the last stage of the FFT involves only
nearest neighbor communication under either mapping. For the FFI' mapping, models
similar to ours have been used by Swarztrauber [9] and Walton [12].

Note that the computational time decreases with d while the communication time may
increase with d . Thus an optimal value of d can be found which minimizes the paral-
lel execution time. Swarztrauber [9] has carried out a similar analysis for the usual
FFI' mapping f and he found that, with the optimal number of processors, the com-
munication time actually dominates the computational time. It is therefore important
to consider communication effiqient mappings of the data. With the BRGC mapping,
the optimal value. of d is lower than with the FFI' mapping because the communica-
tion is more costly. In Figure 4, we plotted the times for a 1024-point FFT (n=10)
using a set of machine parameters considered by Swarztrauber [9]. It is seen that with
the optimal values of d , communication times dominate the computation times. How-
ever, for a large range of values of d less than the optimal values, the communication
times are significantly lower than the computational times. In other words, for large

FFlX-Xypercube

values of n / d , relatively high efficiencies can be achieved, a fact also observed by
Walton [12]. It must be emphasized that perfect efficiency cannot be achieved how-
ever large nld is because the ratio of computation time to communication time does
not tend to zero. Finally, it can be seen from the plots that for large values of n l d ,
the times for the BRGC mapping is only slightly higher than that for the FFI' map-
ping. The conclusion is that for an efficient FFT computation, the overhead of the
BRGC mapping over the FFT mapping is not significant.

Next, we compare our model to the timing results obtained by Chamberlain [lo] on
the Intel iPSC for a 4096-point FFT using both the FFI' mapping and the BRGC map-
ping. These results (I ax tabulated in Table 1.

', ''

Due to imperfect load balancing, some nodes finishes before others and the two values
given in the table are for the fastest processor and the slowest processor. To compare
with our model, we have to use a reasonable set of machine parameters. For the arith-
metic time a , we took the single processor time and divided that by qn, resulting in a
value of a 4 . 5 7 5 milliseconds. This accounts for the actual arithmetic speed achieved
with the compiled code (versus the peak flops rating of the arithmetic processor.) For
the communication parameters s and c , we used the timing results obtained at Yale by
S a i d [13]: a starhp cost of 6 milliseconds and a transfer rate of 1 microsecond per
byte and unidirectional channels. (These figures are for the first iPSC systems
delivered in late 1985. Intel has since improved the communication timing.) This
translates to the values s=12 milliseconds and c=16 microseconds for 32-bit numbers.
Using this set of machine parameters,' the predicted times for the model are then com-
puted for various v'alues of d and compared with the averaged values in Table 1. (This
is a fair comparison because our model does not take into account the load imbalance
which caused the spread in the timings in Table 1.) The speedup factors are tabulated
in Table 2 and plotted in Figure 5. The model agrees rather well with the timing
results. -

-.I

X' .-
A.' .
.I

. Y

FFT/Hypercube 10

Table 2. Speed up comparison between model and Chamberlain experiment.

8.2. Timing for the Conversion Algorithm

Next we consider the cost of the conversion algorithm between the BRGC mapping
and the FFT mapping. The algorithm in section 6 can be extended in two ways to the
case of 4 data elements per node. The first method is simply to send the 4 elements
at each step instead of one. The time for this is

' L

T, = (d-l)(s+cq).

The second method is to pipeline the data elements in each send [4,11]. In othe
words, each send consists of only one element but each node will send 4 times. The
motivation is that the processors will be kept busy more often because some sends can
be overlapped. Since a total of q+d-2 exchanges are needed, the time for this method
is

Tcp = (4+d-2) (~+~) .

By comparing the two, we find that T, < Tcp if SIC > d(1-1lq)-1. If q > l then this
condition reduces to s l c >d -1. For most commercially available hypercubes,
slcwd-1 and therefore the non-pipelining method is faster. The main reason is that
the pipelining method has more startups which are costly on these machines. From
now on we shall only use T,.

f . 1

_. _ .

83 . Comparison of the Mappings

We now consider the question of which mapping is better for a given application and
whether the conversion to the optimal mapping is worthwhile before we execute an
algorithm.

Consider the situation in which we have an application which consists of k FFTs then
followed by I "-mesh computations. We shall consider the communication time of
the various possibilities. We assume that one NN-mesh communication consists of
sending one boundary data to a neighbor.

FFT/Hypercube 11
&

If we use the BRGC mapping for both computations with no conversion, then the
communication time is given by

Tb = I (S+C)+k (M-l)(~+qc).

The factor (2d-1) in the second term on the right corresponds to a dilation of 2 for the
first d-1 steps of .the butterfly and a dilation of 1 for the final step.

If we use the FFI' mapping with no conversion, the time is
Tf = Id (S +C)+kd (S + q ~).

The extra factor of d in the first term corresponds to the dilation of mapping the NN-
mesh graph to the hypercube using the FFT mapping.

If we use the optimal mapping for each computation and convert between them, the
time is

- T, = I(s+c)+2(d-l)(s+qc)+kd(s+qc).
The second term in the right hand side corresponds to the conversion time.

For given values of k and I , the above timing formulas can be used to determine
which mapping/conversion combination has the least communication cost. We have the
fdlowing geneid results.

Theorem 4

T, < Tb i f k > 2 for any 1 ,

T, < Tf if I > 2(s+qc)/(s+c) for any k,

Tb < Tf if Ilk > (s+qc)/(s+c).

We shall consider two extreme situations here. The first case is where 1 is much
larger than k , in other words a primarily NN-mesh computation. In particular, if
Ilk > (s+qc)/(s+c), then Tb < Tf and so the BRGC mapping should be used for the
NN-mesh computations. If in addition k>2, then T, < Tb . In other words, we should
convert the data to the FFT mapping if we are going to perform more than two FFTs.
In many applications, an FFT is immediately folllowed by an inverse FFT and our
result shows that in these cases it is not necessary to convert the data to the FFI' map-
ping.

The second situation is where k is much larger than 1 which means that we have a pri-
marily FF"' computation. In particulai, if Ilk < (s+qc)/(s+c), then the FFI' mapping
should be used for the FFT computations. Moreover, if 1 > 2(s+qc)/(s+c), then
T, < Tf, and we, should convert to the BRGC mapping for the NN-mesh computa-
tions.

.

FFUHypercube 12

9. Concluding Remarks

A typical parallel program contains several algorithms working on the same data. One
of the main purposes of this article is to emphasize the need to go beyond studying the
optimal implementation of, the individual algorithms but to look at the whole collection
as a whole. The reason is simply that what is best for one algorithm may not be
optimal for the others. We have shown in this article one such example involving the
implementation of the FFT algorithm and the nearest neighbor mesh algorithm on
hypercubes. We demonstrated that the natural FFT mapping of data onto the hyper-
cube is not perfectly suited for NN-mesh computations. On the other hand, the natural
NN-mesh mapping using the special BRGC is quite suitable for FFI' computations.

The optimal choice of a mapping depends on many factors, such as the frequency the
algorithms are to be executed and the ratio of the arithmetic speed to the communica-
tion speed. Moreover, it may be cost effective to convert the data into the optimal
configuration for a certain algorithm before executing it.

Since the BRGC mapping is also ideal for other algorithm for computations on
meshes, such as cyclic reduction and multigrid algorithms, we feel that perhaps it
should be considered in addition to the natural FFT mapping in applications involving
FFT computations.

FFl"/H ypercube

References

[l] T.F. Chan, Y. Saad, Multigrid Algorithms on the Hypercube Multiprocessor,
Research Report YAL,EU/DCS/RR-368, February, 1985. IEEE Trans. on Comp., Vol.
C-35, No.11, November 1986, pp. 969-977.

[2] G. Fox, S. Otto, Decomposition of Scientijc Problems for Concurrent Processors,
Physics Today, May, 1984.

[3] L.S. Johnsson, Odd-Even Cyclic Reduction on Ensemble Architecwes, Research
Report YALEU/DCS/RR-339, Oct. 1984.

[4] L.S. Johnsson, Communication Efficient Basic Linear Algebra Computations on
Hypercube Architecture, Research Report YALEU/DCS/RR-361, Sept. 1985. To
appear in J. Parallel and Distributed Computing.

[SI E.M. Reingold, J. Nievergelt, N. Deo, Combinatorial Algorithms, Prentice Hall,
New York, 1977.

4

I

[6] A. Rosenberg, Data Encoding and Their Costs, Acta Inform. 9 (1978), pp.273-292.

171 Y. S a d , M.H. Schultz, Some Topological Properties of the Hypercube Multipro-
cessor, Research Report YALEU/DCS/RR-428, October, 1985.

181 J. Salmon, private communication. See also Chapter 8 of the book "Solving Prob-
l e m on Concurrent Processors" by G. Fox et al, to be published.

[9] P. N. Swarztrauber, Multiprocessor FFTs, manuscript, June, 1986. Paper given at
the International Conference on Vector and Parallel Computing, June 2-6, Loen, Nor-
way.

[lo] R.M. Chamberlain, Gray Codes, Fast Fourier Transforms and Hypercubes,
Report CCS 86/1, Chr. Michelsen Institute, Bergen, Norway, May, 1986.

[ll] L.S. Johnsson, Data Permutation and Basic Linear Algebra Computations on
Ensemble Architectures, Research Report YALEUPCSIRR-367, Feb. 1985.

1121 S. R Walton, Fast Fourier Transforms on the Hypercube, paper delivered at the
Second Hypercube Conference, Knoxville, Tennessee, September, 1986.

[131 F. Saied, Private- Coliununicaion,
1 b

X
0

X
1

X
2

X
3

X
4

X
5

X
6

X
7

Fig. 1 The FFT"Butterf1y"

X
0

X
4

X
2

X
6

X
1

X
5

X
3

X
7

d: '6 x7

;4

0

/ x 5 . A

7

3
x3

Fig. 2 The Natural 'FFT Mapping .for the Hypercube

The x.'s I denote array eler ents, the integers node numbers.

6 .
7- r ”..

6 ‘4 x5

7

3
x2

Fig. 3 The Gray Code NN-Mesh Mapping for the Hypercube

The x.’s I denote array elements, the integers node numbers.

0.035

a = 5.E-6, s = l.E-3, c = l.E-5

- * * Total time, FFT Mapping
- - : Communication time, FFT Mapping
.... : Total time, BRGC Mapping
-.- : Communication time, BRGC Mapping

-

-

-
,*-a*-

.d
...-*-

.e' .c..*.* . ,>"
, .;..'.

,,$:>. . . . '.'. ': >.- -
. ,;..;,; 1 5 . -

*._ ,, ,,-....... _._.-.
,._.- .-.-.

____--------- .--- ; _---- ..

0.03

0.025

0 .s 0.02
k

0.015

0.01

0.005
1

Fig. 4. Model Times for 1024-point FFT
I I I I I I I I

2 3 4 5 6 7 8 ' 9 10

Cube Dimension d

.

Fig. 5. Speed Up Comparison Between Model and Chamberlain Data
70 I I I I I I

50 *I
30

b e : P.rfect !qxxx! Zlp /
+ : Model, Mapping
* : Experiment, FFT Mapping
o : Model, BRGC Mapping
x : Experiment, BRGC Mapping

+

i

Number of Processors

.

.

